近年來,抗生素已被廣泛應(yīng)用于醫(yī)療行業(yè),在人類和動(dòng)物疾病防治等方面發(fā)揮了極大的作用(丁麗丹等,2021).抗生素是一類由細(xì)菌、霉菌等微生物代謝產(chǎn)生或人工合成的能夠殺滅其他微生物的化學(xué)物質(zhì)(張瑋瑋等,2013),按化學(xué)結(jié)構(gòu)的不同可分為四環(huán)素類、多肽類、大環(huán)內(nèi)脂類等(Bu et al.,2016).其中,四環(huán)素(tetracycline,簡(jiǎn)寫為TC)是世界上應(yīng)用很廣泛的抗生素之一(Martinez,2009),因其難生物降解性,常常在地表水、土壤和地下水中被檢測(cè)到(蔣海燕等,2020),對(duì)生態(tài)環(huán)境和人類健康造成嚴(yán)重的威脅(韓爽等,2021).
近年來基于臭氧、Fenton、過硫酸鹽等的各種高級(jí)氧化技術(shù)已逐漸成為水污染控制領(lǐng)域的研究熱點(diǎn).其中,臭氧催化氧化反應(yīng)快速高效且臭氧分解產(chǎn)物清潔,被視為一種極具潛力的廢水處理方法.臭氧是一種非?;顫姷臍怏w,與氧氣相比,它更容易溶于水.溶解后的臭氧以兩種不同的方式與污染物發(fā)生反應(yīng),即臭氧分子可以直接選擇性降解有機(jī)物,或通過生成二次氧化劑,如羥基自由基等非選擇性降解有機(jī)物(Malik et al.,2019).由于臭氧的制造成本較高,其實(shí)際應(yīng)用受到了限制,而引入催化劑的臭氧催化氧化技術(shù)大大提高了臭氧利用率,因此被廣泛應(yīng)用于工業(yè)水處理領(lǐng)域(任斌等,2020).一般情況下,催化臭氧化過程通常使用金屬離子或金屬氧化物作為催化劑(Wang et al.,2020).Chen等(2019)制備出的Fe3O4/Co3O4復(fù)合材料通過催化臭氧化系統(tǒng)顯著提高磺胺甲惡唑的礦化效果,達(dá)到了60%的TOC去除率.但是金屬氧化物作為催化劑單獨(dú)使用也會(huì)出現(xiàn)活性位點(diǎn)不足,比表面積有限等缺點(diǎn).將金屬或金屬氧化物負(fù)載于載體上,載體表面提供大量活性位點(diǎn),從而表現(xiàn)出更高的活性(Yang et al.,2016).金屬成分在賦予基體優(yōu)異催化性能的同時(shí),不可避免會(huì)出現(xiàn)金屬浸出問題(李凱等,2021),因此,需要制備出一個(gè)具有較高催化活性且良好穩(wěn)定性的催化劑.彭娟等將Mn、Fe、Ce 3種金屬負(fù)載于活性炭(Activated Charcoal,簡(jiǎn)寫為AC)上,使用該催化劑臭氧催化氧化120min去除了制藥廢水中80%的CODCr(彭娟等,2019).Li等用Fe-MCM-48催化劑結(jié)合O3處理雙氯芬酸,60 min時(shí)TOC的去除率約為49.9%,是單一臭氧處理的2.0倍(Li et al.,2018).
在負(fù)載金屬選擇上,鐵是一種十分常見的催化劑,鐵不僅可以在臭氧催化體系中表現(xiàn)出較高的催化活性,還因其在自然界中含量豐富,廉價(jià)易得且易于合成(靳志豪等,2021),受到了越來越多的關(guān)注.此外,一些鐵化合物具有特殊的特性,如Fe3O4具有磁性.近年來,F(xiàn)e3O4納米顆粒由于其低毒性、高磁性、高電性和可循環(huán)利用等優(yōu)點(diǎn)(Zhang et al.,2020),作為催化劑受到越來越多的關(guān)注.Wu等制備的Fe3O4@SiO2@Mg(OH)2在臭氧催化氧化磺胺噻唑時(shí),10 min內(nèi)可去除99.0%以上的TOC,60 min內(nèi)可去除40.1%(Wu et al.,2020).
圖3b為Fe 2p的譜圖,在728.1和724.6 eV 處的特征峰(Peak4/5)對(duì)應(yīng)于Fe 2p1/2(Li et al.,2020;黎素等,2021),由Fe(II)氧化物和Fe(III)氧化物形成(Shwan et al.,2015);714.7和710.9 eV 處的特征峰(Peak1/2)分別對(duì)應(yīng)Fe2+衛(wèi)星峰和Fe 2p3/2(Yamashita et al.,2008);Fe 2p譜中的Fe 2p3/2和Fe 2p1/2的結(jié)合能峰值分別為710.9和724.6 eV,這兩個(gè)峰的之間的距離大于13 eV,證明催化劑中存在Fe3+(Ma et al.,2016;Yu et al.,2019);同時(shí)在結(jié)合能為718.8和732.7 eV處也獲得明顯衛(wèi)星峰(Peak3/6),進(jìn)一步證實(shí)材料中有Fe3+(張帆等,2021).因此,復(fù)合催化劑中的鐵的存在形態(tài)是Fe(II)和Fe(III)的氧化物.根據(jù)XPS圖各電位峰面積統(tǒng)計(jì),在催化劑的鐵元素中,F(xiàn)e(II)和Fe(III)的比例為0.58∶0.42,接近于1∶1.催化劑制備原料之一為Fe3O4,理論上Fe(II)和Fe(III)的比例應(yīng)為1∶2,說明催化層中Fe的價(jià)態(tài)在制備過程中發(fā)生了變化,有一部分Fe(III)被還原為Fe(II),這是還原性的制備環(huán)境所致.催化層在與臭氧分子作用,產(chǎn)生活性自由基過程中,涉及到電子轉(zhuǎn)移,電子越容易轉(zhuǎn)移,生成的自由基越多.推測(cè)Fe(II)和Fe(III)接近1∶1的價(jià)態(tài)比例有利于電子轉(zhuǎn)移和活性自由基的生成.
圖3c為Ce 3d的譜圖,在882.1~898.1和900.5~916.5 eV處的結(jié)合能對(duì)應(yīng)于Ce 3d 5/2和Ce 3d 3/2(Li etal.,2020). 其中,886.9、897.9 和904.4 eV 處特征峰(Peak1/3/5)對(duì)應(yīng)Ce(III)氧化物;888.2、901.2、907.0 和916.6 eV的峰(Peak2/4/6/8)對(duì)應(yīng)于Ce(IV)氧化物相關(guān)(He et al.,2018 ;Wu et al.,2018),這可能是由于催化劑在煅燒制備過程中Ce(III)發(fā)生了氧化,也可能是在烘干和保存過程中一部分Ce(III)被氧化(Sun et al.,2019).其中,Ce(III)和Ce(IV)比例約為0.49∶0.51.
3.4.2 降解機(jī)理討論目前在對(duì)于臭氧催化氧化技術(shù)作用機(jī)理上仍有不同看法,但大多數(shù)學(xué)者支持自由基理論.由淬滅實(shí)驗(yàn)可知,NaHCO3的加入大大影響了催化效果,NaHCO3淬滅·OH的公式見式(1)(Afzal et al.,2017).
由此可以說明Fe(II)和Fe(III)、Ce(III)和Ce(IV)兩對(duì)氧化-還原體系的循環(huán)在促進(jìn)·OH的形成中起到了重要作用(李民等,2017;Xiong et al.,2019),同時(shí)也對(duì)應(yīng)前面pH的影響試驗(yàn)結(jié)果,證明H+在催化氧化過程中存在的必要性.
催化層中存在大量的氧空位和適宜比例的Fe(II)和Fe(III)、Ce(III)和Ce(IV)兩對(duì)氧化-還原體系,對(duì)于催化過程中增加催化活性位點(diǎn)數(shù)量和提高電子轉(zhuǎn)移能力,從而促進(jìn)·OH的生成具有重要意義.氧空位數(shù)量和氧化-還原體系是提高催化劑性能的關(guān)鍵影響因素(Wang et al.,2019),富含氧空位并且能夠促進(jìn)電子轉(zhuǎn)移和O3離解是催化劑展示出優(yōu)異催化性能的主要原因(Guo et al.,2019).關(guān)于該催化劑性能有待進(jìn)一步的深入研究.
據(jù)此,可以將Fe3O4-CeOx/AC的催化活性歸因于以下因素:首先是催化劑具有較大的比表面積(Chen etal.,2019);其次,具有豐富的氧空位作為與O3作用的催化點(diǎn)位;再次,特殊的制備條件得到了適宜比例的Fe(II)和Fe(III)、Ce(III)和Ce(IV)活性層,增強(qiáng)了電子傳遞能力,有利于催化促進(jìn)·OH等強(qiáng)氧化劑的產(chǎn)生(Park et al.,2003).此外,在水溶液中,金屬氧化物表面容易通過水分子的解離性化學(xué)吸附而發(fā)生羥基化(Tamura et al.,1999).這些羥基可以釋放質(zhì)子,充當(dāng)Brönsted酸位.同時(shí),當(dāng)吸附的水分子被解吸時(shí),會(huì)形成金屬陽(yáng)離子和配位不飽和氧,分別充當(dāng)路易斯酸和路易斯堿位,金屬氧化物的表面羥基和這些位點(diǎn)都可以有效提升催化效率(Wang et al.,2017).
Afzal S,Quan X,Zhang J L. 2017. High surface area mesoporous nanocast LaMO3(M=Mn,F(xiàn)e)perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism [J]. Applied Catalysis B-Environmental, 206: 692-703
Bu Q W,Wang B,Huang J,et al. 2016. Estimating the use of antibiotics for humans across China [J]. Chemosphere, 144(2): 1384-1390
Chen H,Wang J L. 2019. Catalytic ozonation of sulfamethoxazole over Fe3O4/Co3O4 composites [J]. Chemosphere, 234: 14-24
Chen W R,Bao Y X,Li X K,et al. 2019b. Mineralization of salicylic acid via catalytic ozonation with Fe-Cu@SiO2 core-shell catalyst:A two-stage first order reaction [J]. Chemosphere, 235(11): 470-480
He S M,Luan P C,Mo L H,et al. 2018. Mineralization of recalcitrant organic pollutants in pulp and paper mill wastewaters through ozonation catalyzed by Cu-Ce supported on Al2O3 [J]. Bioresources, 13: 3686-3703
Li J Y,Song W F,Mao X C,et al. 2020. Catalytic ozonation of dairy farming wastewater using a Mn-Fe-Ce/gamma-Al2O3 ternary catalyst:Performance,generation,and quenching of hydroxyl radicals [J]. Journal of Physical Chemistry C, 124: 13215-13224
Li X K,Chen W R,Tang Y M,et al. 2018. Relationship between the structure of Fe-MCM-48 and its activity in catalytic ozonation for diclofenac mineralization [J]. Chemosphere, 206: 615-621
Ma K Y,Cheng J P,Zhang J,et al. 2016. Dependence of Co/Fe ratios in Co-Fe layered double hydroxides on the structure and capacitive properties [J]. Electrochimica Acta, 198: 231-240
Malik S N,Khan S M,Ghosp P C,et al. 2019. Treatment of pharmaceutical industrial wastewater by nano-catalyzed ozonation in a semi-batch reactor for improved biodegradability [J]. Science of the Total Environment, 678: 114-122
Martinez J L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants [J]. Environmental Pollution, 157: 2893-2902
Park C,Keane M A. 2003. Catalyst support effects:Gas-phase hydrogenation of phenol over palladium [J]. Journal of Colloid and Interface Science, 266: 183-194
Shwan S,Jansson J,Olsson L,et al. 2015. Chemical deactivation of H-BEA and Fe-BEA as NH3-SCR catalysts-effect of potassium [J]. Applied Catalysis B-Environmental, 166: 277-286
Sun M L,Zhang W D,Sun Y J,et al. 2019. Synergistic integration of metallic Bi and defects on BiOI:Enhanced photocatalytic NO removal and conversion pathway [J]. Chinese Journal of Catalysis, 40: 826-836
Tamura H,Tanaka A,Mita K,et al. 1999. Surface hydroxyl site densities on metal oxides as a measure for the ion-exchange capacity [J]. Journal of Colloid and Interface Science, 209: 225-231
Wang J L,Bai Z Y. 2017. Fe-based catalysts for heterogeneous catalytic ozonation of emerging contaminants in water and wastewater [J]. Chemical Engineering Journal, 312: 79-98
Wang J L,Chen H. 2020. Catalytic ozonation for water and wastewater treatment:Recent advances and perspective [J]. Science of the Total Environment, 704: 135249
Wang Y X,Chen L L,Cao H B,et al. 2019. Role of oxygen vacancies and Mn sites in hierarchical Mn2O3/LaMnO3-δ perovskite composites for aqueous organic pollutants decontamination [J]. Applied Catalysis B-Environmental, 245: 546-554
Wu J,Sun Q,Lu J. 2020. Synthesis of magnetic core-shell Fe3O4@SiO2@Mg(OH)2 composite using waste bischofite and its catalytic performance for ozonation of antibiotics [J]. Journal of Environmental Chemical Engineering, 8(5): 104318
Wu Z W,Zhang G Q,Zhang R Y,et al. 2018. Insights into mechanism of catalytic ozonation over practicable mesoporous Mn-CeOx/gamma-Al2O3 catalysts [J]. Industrial & Engineering Chemistry Research, 57: 1943-1953
Xiong W,Chen N,F(xiàn)eng C P,et al. 2019. Ozonation catalyzed by iron-and/or manganese-supported granular activated carbons for the treatment of phenol [J]. Environmental Science and Pollution Research, 26: 21022-21033
Yamashita T,Hayes P. 2008. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials [J]. Applied Surface Science, 254: 2441-2449
Yang X J,Xu X M,Xu X C,et al. 2016. Modeling and kinetics study of Bisphenol A(BPA)degradation over an FeOCl/SiO2 Fenton-like catalyst [J]. Catalysis Today, 276: 85-96
Yu D Y,Wu M H,Hu Q,et al. 2019. Iron-based metal-organic frameworks as novel platforms for catalytic ozonation of organic pollutant:Efficiency and mechanism [J]. Journal of Hazardous Materials, 367: 456-464
Zhang H,He Y L,Lai L D,et al. 2020. Catalytic ozonation of Bisphenol A in aqueous solution by Fe3O4-MnO2 magnetic composites:Performance,transformation pathways and mechanism [J]. Separation And Purification Technology, 245:116449
Zhang L F,Zhang L H,Sun Y L,et al. 2021. Porous ZrO2 encapsulated perovskite composite oxide for organic pollutants removal:Enhanced catalytic efficiency and suppressed metal leaching [J]. Journal of Colloid and Interface Science, 596: 455-467