近日,同濟大學(xué)馬魯銘研究團隊在Water Research上發(fā)表了論文“Advanced treatment of industrial wastewater by ozonation with iron-based monolithic catalyst packing: From mechanism to application.”(DOI: 10.1016/j.watres.2023.119860),介紹了鐵基催化劑整砌填料的制備過程,分析了它的填料特性及其在高級氧化中獨特優(yōu)勢,配套設(shè)計并優(yōu)化了兩種反應(yīng)器類型——鋼結(jié)構(gòu)塔式反應(yīng)器和砼結(jié)構(gòu)多單元并行的矩形反應(yīng)器,評估了運行參數(shù)對COD去除率的影響,概算了該技術(shù)投資和運行成本。新型催化劑整砌填料,為催化臭氧形成高級氧化機制提供了可行的工程化技術(shù),可供工業(yè)廢水深度處理工藝選擇時參考。
Fig. 1. (a) Modification of Fe shavings and process of surface film growth, (b) appearance of Fe-based catalyst before and after modification, (c) XRD and (d) SEM patterns of the Fe-basedcatalyst, (e) Nyquist plots of electrochemical impedance of Fe-basedcatalyst surface film before and after modification (the working electrode was a Fe shaving with an exposed area of 1 cm2, saturated calomel electrode was the reference electrode, platinum plate electrode as the counter electrode and 0.1 mol/L Na2SO4as the electrolyte solution). (f) •OH production in solution under different catalyst doses (c(TBA)=75 mmol/L, gas flow rate =300 mL/min, gaseous O3 concentration =64.4 mg/L). Copyright 2023, Elsevier Inc.
Fig. 2. (a, b) Conceptual sketch for the preparation of Fe-based monolithic catalyst packing,(c) Mechanism of •OH generation in the presence of FeOOH (Nawrocki and Kasprzyk-Hordern, 2010; Zhang and Ma, 2008), (d) The effectivespecific surface areas of Fe-based monolithic catalystpacking as a function of the bulk density, (e) Schematic diagram of “action zone” and “micro-channel” structure of Fe-based monolithic catalyst packing. Copyright 2023, Elsevier Inc.
Fig. 4. Schematic of the reinforced concrete construction reactor, (a) the distance from catalyst packing to O3 gas distribution device and (b) the distance from O3 gas distribution device to water collecting pipe. Copyright 2023, Elsevier Inc.
Fig. 5. Fe-based catalysts catalytic ozonation of different industrial wastewater after biochemical treatment, catalysts dose: 200 g/L, gas flow rate =1 L/min, gaseous O3 concentration =54.7 mg/L. Copyright 2023, Elsevier Inc.
Fig. 6. Removal characteristics of organic pollutants in different industries wastewater by continuous flow testing in tower reactor(O3/ΔCOD of dyeing, electronic, paper-making and liquor brewing wastewater were 0.8-2.4, 0.3-3.5, 0.9-4.0 and 1.0-4.0, respectively). Copyright 2023, Elsevier Inc.
Permissions for reuse of all Figures have been obtained from the original publisher. Copyright 2023, Elsevier Inc
參考文獻:
Wenhui An, Xufang Li, Jieting Ma, Luming Ma, Advanced treatment of industrial wastewater by ozonation with iron-based monolithic catalyst packing: From mechanism to application, Water Research, 2023, 235: 119860